top of page

Metodologia com IA identifica espécies florestais de valor comercial

O Netflora, metodologia desenvolvida pela Embrapa, reúne um conjunto de algoritmos treinados com inteligência artificial (IA) para reconhecer espécies florestais. Realizado com base em características botânicas, disponíveis em um banco de dados, esse aprendizado permite identificar árvores de interesse comercial e indicar a sua localização exata na floresta. Espécies como castanheira, cumaru-ferro, açaí e cedro são reconhecidas com índices de acerto de 95%, resultado que reduz custos de produção e torna mais sustentável o manejo de florestas na Amazônia.


18/04/2024 - O Netflora, metodologia desenvolvida pela Embrapa, reúne um conjunto de algoritmos treinados com inteligência artificial (IA) para reconhecer espécies florestais.

Realizado com base em características botânicas, disponíveis em um banco de dados, esse aprendizado permite identificar árvores de interesse comercial e indicar a sua localização exata na floresta.


Espécies como castanheira, cumaru-ferro, açaí e cedro são reconhecidas com índices de acerto de 95%, resultado que reduz custos de produção e torna mais sustentável o manejo de florestas na Amazônia.


De acordo com o pesquisador da Embrapa Acre Evandro Orfanó (foto à esquerda), um dos coordenadores desses estudos, o Netflora confere maior automação ao planejamento da atividade florestal e aumenta a precisão e eficiência na execução de planos de manejo.

“Uma vez treinado e especializado, o algoritmo também fornece métricas, como diâmetro e área de copa, que possibilitam estimar, por meio de equações alométricas (que relacionam formas e tamanhos), o volume de madeira de cada árvore. Essas ferramentas tecnológicas contribuem para o aumento da produção florestal com conservação ambiental”, afirma.


As pesquisas para viabilizar o uso de inteligência artificial no setor florestal são desenvolvidas pela Embrapa desde 2015 e contemplam diferentes aspectos da atividade. Na fase atual, os estudos acontecem por meio do projeto Geotecnologias aplicadas à automação florestal e espacialização dos estoques de carbono em uso nativo e modificado da terra na Amazônia Ocidental (Geoflora), executado no Acre, Rondônia, Roraima, Amapá, Pará e Amazonas, em parceria com o Fundo JBS pela Amazônia.


A adoção dessas tecnologias implica investimentos em computadores, drones, baterias e estrutura adequada de escritório. Segundo Orfanó, esse gasto inicial é compensado pela redução drástica nos custos de produção, especialmente na etapa do inventário florestal. Para se ter uma ideia, no levantamento tradicional de espécies, com equipes em campo, um hectare de floresta mapeado tem custo estimado entre R$ 100 e R$ 140, enquanto com a metodologia Netflora esse valor cai para R$ 4 a R$ 6.


“Uma empresa florestal que utiliza o manejo tradicional consegue mapear até 10 mil hectares de floresta por ano. Com o uso de IA, o ganho em capacidade operacional pode saltar para até um milhão de hectares no mesmo período”, acrescenta.


Para construir o banco de dados de treinamento de algoritmos, foram mapeados mais de 40 mil hectares de floresta, em 37 sítios (áreas) do Acre, Rondônia e sul do Amazonas, com uso de drones.


Em dois anos de estudo foram realizados cerca de mil planos de voos e cada um gerou, aproximadamente, 300 imagens aéreas, que foram tratadas e transformadas em ortofotos (imagens georreferenciadas e de alta resolução). Com base na gama de informações contidas nas ortofotos foram treinados nove algoritmos, com finalidades e performances de acerto distintas.


“Temos algoritmos que reconhecem uma única espécie florestal, outros têm capacidade para identificar diferentes grupos ou as principais árvores madeireiras e não madeireiras do Acre e outras localidades da Amazônia. Alguns algoritmos já alcançaram alta performance, mas esse aprendizado será contínuo”, salienta Orfanó, que estima a meta de mapeamento do projeto em 80 mil hectares de floresta, com inserção de novas áreas de interesse comercial na Amazônia, para ampliar a construção do banco de dados.


Ainda de acordo com o especialista, na medida em que aumentar o conhecimento sobre a floresta, será possível intensificar o aprendizado dos algoritmos treinados e habilitar novos algoritmos, por grupo de espécies, conforme demandas regionais.


As imagens aéreas coletadas no trabalho de pesquisa são processadas e transformadas em ortofotos no Laboratório de Geotecnologias da Embrapa Acre.


A partir das informações das ortofotos, o treinamento dos algoritmos ocorre por meio de uma rede neural artificial (método de inteligência artificial que ensina computadores a processar dados de uma forma inspirada pelo cérebro humano), composta por filtros que extraem dessas imagens de alta resolução informações relevantes do objeto de interesse e apresenta ao algoritmo.


Cada algoritmo do Netflora possibilita incontáveis combinações de treinamento. Além de conferir maior agilidade à etapa de inventário florestal, a metodologia pode fornecer informações para estimar a produção e aperfeiçoar técnicas em planos de manejo e contribuir para ajustar estratégias de colheita para espécies não madeireiras.


Outra classe de algoritmos será capaz de reconhecer pilhas de toras, madeira serrada e clareiras abertas por evento climático ou provocadas pelo homem, entre outras ações no ambiente florestal. “Também estão em treinamento algoritmos aptos a estabelecer correlações entre aspectos da morfologia de copa das árvores com estoques de carbono na floresta. Esse conhecimento poderá auxiliar nas avaliações sobre os efeitos das mudanças climáticas na dinâmica de clareira naturais”, observa Orfanó.


*com informações da Embrapa


Fonte: site Forest News



Comments


bottom of page